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A~aet-Two-dimensional numerical simulations of the natural convection Bow of air in a diffe~ntially 
heated, inclined square cavity were performed for both laminar and turbulent flows. The angle of inclination 
of the cavity was varied from 0” (heated from helow) to 180” (heated from above). For Rayleigh numbers 
between lo4 and 10” the natural convection flow has been calculated. A detailed analysis was made for 
Rayleigh numbers of lo6 and 10”. The standard k-c model for turbulence was used in the prediction of 
turbulent flows. Numerical predictions of the heat flux at the hot wall and the influence of the angle of 
inclination on the Nusselt number are presented. The Nusselt number shows strong dependence on the 
orientation of the cavity and the power law dependence on the Rayleigh number of the flow. Flow patterns 
and isotherms are shown to give greater ~derstand~ng of the local heat transfer. For the high Rayleigh 

number calculations hysteresis of the solution was found at a transition of flow patterns. 

1. INTRODUCTION 

THE STUDY of the natural convection Aow in a cavity 
has mainly been devoted to the two limiting situations 
of the Rayleigh43tnard problem, where the gravi- 
tational vector is parallel to the imposed temperature 
gradient, and the configuration of a cavity heated 
from the vertical side. Especially, numerical cal- 
culations of natural convection flow in the turbulent 
regime have been limited to these two cases [l]. How- 
ever, in many applications the position of the hot and 
cold wall of a cavity with respect to the gravitational 
vector demands a study in which buoyancy forces 
have both normal and tangential components relative 
to the cavity walls. The present study provides numeri- 
cal simulations of the natural convection flow in a 
wide variety of orientations and Rayleigh numbers. 

The significance of the research on natural con- 
vection flow in inclined cavities has been discussed in 
review articles of Yang [I] and Catton [2]. Though 
the majority of studies are dedicated to the two extreme 
situations, comprehension of these flows may be 
enlarged by considering them as merely one of the 
many flow patterns appearing in changing the cavity 
orientation. 

In the early 197Os, the first thorough studies of natu- 
ral convection in inclined cavities appeared and were 
dedicated to the stability problem of the flow. Hart 
[3] determined the critical Rayleigh number and the 
associated flow patterns for the instabilities of an 
inclined heated flat plate. Following this qualitative 
approach, a number of studies were dedicated to the 
experimental determination of Nusselt numbers for 
laminar flows in inclined cavities of large aspect ratio. 
These studies arose from the intensive investigation of 

the application of solar energy collectors and double- 
glazed windows. Up to the 198Os, experimentaf 
research was performed on determination of Nusselt 
numbers (e.g. [4-6]), flow structures (e.g. 171) and 
critical Rayleigh number (e.g. [8]). 

Also in the numerical determination of the natural 
convection flow in inclined cavities, research was 
focused on laminar flows and on the early stages of 
its transition to turbulence. Ozoe et al. 19, lo] and 
Catton et al. [l 11 performed studies on the numerical 
approach of this subject. 

In the 1980s the knowledge of the flows was 
extended by numerical investigation of the 3D aspects 
[I23 and the influence of variable fluid properties and 
radiation 1131. Local heat-transfer measurements and 
calculations were recently reported by Hamady et al. 
[14]. We might say that nowadays the laminar regime 
in natural convection in inclined enclosures is quite 
well known. 

During the last few years, the subject of natural 
convection in inclined cavities has been extended by 
additional variations. Research has been done on the 
influence of partitions in the geometry, on changes in 
the geometry (e.g. [15,16]) and on changes in the 
boundary conditions, for example cavities heated by 
two perpendicular walls. 

Except for the two limiting situations (e.g. 117, 
1 S]) and some orienting work by Lankhorst [19], high 
Rayleigh number turbulent natural convection in the 
inclined cavity ,has so far been neglected. Exper- 
imentally, the heat transfer has been examined up to 
Ra = 10’ [20], but numerical analysis for turbulent 
flows in inclined enclosures has not been reported on. 

This study will give results in both the laminar and 
the turbulent regime. Resides the similarities between 
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NOMENCLATURE 

a thermal diffusivity [m’s ‘1 Greek symbols 

C,L’CirI%cfZiCIX factors in k--E model, see 11 volumetric thermal expansion coefficient 
equation (5) W’l 

9 gravitational acceleration [m s- ‘1 c turbulent energy dissipation rate [m’s ‘] 

G buoyancy term in equations (4) and (5) 0 angle between Ei and .Q 
H cavity height = cavity width [m] P density [kg mm ‘1 
k turbulent kinetic energy [m’ s- ‘1 a turbulent Prandtl number 
Nu local Nusselt number, equation (7) cp angle of inclination, see Fig. 1 [deg]. 
Nu mean Nusselt number, equation (7) 

P pressure [Pa] Subscripts 

Pk production term in equations (4) and (5) C cold wall 

Pr Prandtl number, see equation (6) H hot wall 
Ra Rayleigh number, see equation (6) i coordinate index 

t time [s] t turbulent quantity 
T temperature [K] 1,2 coordinate indices. 
u, v velocity components in the x-, 

y-direction Superscript 

x, y coordinates in the X-, y-direction. + vector indicator. 

the two situations, some remarkable phenomena in compressible and the Boussinesq approximation is 
the turbulent flows will be presented. assumed to be valid [21]. 

2. MATHEMATICAL FORMULATION 

The geometry of a two-dimensional cavity is shown 
in Fig. 1. This study has been limited to a square 
cavity filled with air. The walls at x = 0 and N are 
differentially heated with the hot surface at x = 0. The 
surfaces at y = 0 and H are insulated. The angle of 
inclination cp is defined by the angle between the hot 
wall and the horizontal, in which case cp = 0 is the 
situation of a cavity heated from below. Radiation 
effects are neglected, the fluid is assumed to be in- 

The natural convection flow is described by the 
equations of conservation of mass, momentum and 
energy. In order to describe turbulent flows, the stan- 
dard k-c model for the turbulent kinetic energy and 
its dissipation is used (e.g. [22]). The following set 
of equations, the Reynolds equations, has now been 
obtained 

+~.(v+v,)au+d.(vfv,)~~ (2a) 

au 
;it +?*Eiv = - L 9 -g&T- To) 

P ay 
-,_ 

+v-(v+v,)vv+~.(o+v,)~ (2b) 

(3) 

(4) 

FIG. I. Model of the cavity geometry. in which 



Laminar and turbulent natural convection 2901 

The vector ?j has components 3 = (g,, g2) = 
(-9 cos rp, -g sin cp). Laminar flows are described 
by setting v, = 0 in the equations and omitting the 
equations for k and E. 

The following constants are used in the k-E model 

C, = 0.09, c,, = 1.44, ce2 = 1.92, 

0T = 1.0, CJk = 1.0, 6, = 1.3. 

The buoyancy factor c,~ is taken as 

= tanh Ig*cl 
cc3 J(I~121Ei12_lg.Ei12) 

> 
= tanhbt(Q)l 

in which 0 is the angle between 3 and ii, in order to 
be close to 1 in the vertical part of boundary layers 
and close to 0 in the horizontal part. 

At the walls, zero velocities are prescribed and the 
boundary conditions for the temperature equation are 
taken as shown in Fig. 1. The equations for k and E 
have been solved using two kinds of boundary con- 
ditions. The first set of boundary conditions, orig- 
inally derived for forced convection boundary layer 
flow, applies wall functions in order to reduce the 
number of grid points within the boundary layer. At 
the first inner grid point, the turbulent kinetic energy 
and its dissipation are given by the values 

k = &, E = o.4zy+ 
in which the dimensionless variable y+ = ynuI/v and 
the scaled variable u, = J(v(&,/ay,)) appear (y, is 
the distance to the closest wall and U, the velocity 
component tangential to that wall). In order to avoid 
the requirements of this set of boundary conditions 
with respect to the positioning of the first inner grid 
point, a second type of boundary conditions has been 
used by taking k = 0 and E = co at the walls [22]. The 
turbulent Prandtl number is changed to eT = 0.9 when 
using these Dirichlet conditions. Both sets of bound- 
ary conditions have been used in this study. The main 
results have been obtained by using the first set of 
boundary conditions, while the second set of bound- 
ary conditions has been used to compare the obtained 
flow characteristics and heat transfer results quali- 
tatively. 

The solution of equations (l)-(S) is fully deter- 
mined by three parameters : the Rayleigh number Ra, 
the Prandtl number Pr and the angle of inclination rp, 
where Ra and Pr are defined by 

Ra = MATH3 -, Pr=!. 
va a 

We have used a Prandtl number of 0.71 in solving 
the equations and we are mainly interested in the depen- 

dence of the angle of inclination in two regimes: in 
the laminar regime solutions were obtained for 
Ra = IO6 and in the turbulent regime we used 
Ra = 10”. The calculated heat transfer at the wall is 
presented by the local Nusselt number Nu and the - 
averaged Nusselt number Nu, which are defined as 

K=;ll,Nudy. (7) 

3. NUMERICAL PROCEDURE 

Equations (l)-(S) are solved using a finite-volume 
method with a pressure-correction method as intro- 
duced by Patankar and Spalding [23]. After each line 
Gauss-Seidel sweep for the momentum, energy and 
turbulence equations, the Poisson equation for the 
pressure correction was solved directly over the full 
domain. Although we are interested in stationary 
solutions, the time-dependent formulation was used 
in the discretization of the equations in order to better 
describe the physical process of rotating the cavity 
and to provide a good tool to control convergence. 

The convection-diffusion terms in equations (2)- 
(5) were discretized using the central scheme in lami- 
nar calculations and the hybrid scheme in turbulent 
flow problems. Our numerical results for the case 
cp = 90” were already compared with the laminar 
benchmark solutions of de Vahl Davis [24] and the 
turbulent solutions of Markatos and Pericleous [17] 
in a previous study [22]. 

Because of the symmetrical properties of the 
steady solution, if we take To = (TH + T,-)/2, it is pos- 
sible to solve the equations on half the domain 0 < 
x < H/2. On x = H/2 the boundary conditions then 
read u(y) = -u(H-y), v(y) = -v(H-y), p(y) = 

p(H-y), T(Y) = 1 - T(H-Y), k(y) = k(H-y) and 
s(y) = &(H-y). This roughly reduces computa- 
tional time by a factor of 2. In order to obtain a suf- 
ficient number of grid points in the boundary 
layers, grid points were positioned using a sinusoidal 
distribution according to 

for i= l,...,N 

in both the x- and y-direction. 
Three criteria were used to check convergence : the 

net heat flux through the cavity walls should be small, 
the net mass flow through half the cavity height should 
be small and the computed variables should change 
little during a sweep and a time step. Grid refinement 
was applied to check the accuracy of the solution. The 
number of grid cells used in the calculations were 
chosen such that doubling the number ofcells changed 
the mean Nusselt number by less than 5%. In most 
calculations 60 x 60 grid points were used to obtain 
this accuracy. 
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4. RESULTS 

4.1. Flow characteristics 
Two interesting phenomena in heat transfer are 

associated with the inclination of a differentially 
heated cavity. For low Rayleigh number situations, 
as well as for angles of inclination close to 180 , con- 
duction of heat through the air layer dominates the 
heat transfer and the flow of the fluid is limited. In 
other cases the fluid motion may become the domi- 
nating factor in heat transfer. 

For three situations, the flow structure is quite well 

known. Heated from above (cp = 180’ ), the fluid theo- 
retically stands still and the Nusselt number is purely 
determined by conduction: NLI = 1. The flow in a 
cavity heated from the side (cp = 90 ) at sufficiently 
high Rayleigh number is dominated by the thoroughly 
investigated natural convection boundary layer flow 
along the hot and cold wall. Further rotation at the 
same Rayleigh number gives rise to higher velocities 
because of the increasingly unstable situation of a 
cavity heated from below. For y = 0’. the flow is 
three-dimensional for Rayleigh numbers sufficiently 
high and cannot be described by the two-dimensional 

T” 

Tc 

Flc, 2, F,ow fields for ~~ = 10”. plotted are some isolines of the streamfunction for p = f80’, q = 16’ ’ 
cp = ,4o”, cp = 120”, cp = 900, cp = go”, cp = 70”. cp = 60”, Cp = so”, Cp = 40”, q = 3o‘, q = 20‘. 
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I I 

Tc 

Ptc. 3, Temperature distribution for Ra = 106. Plotted are isotherms (T- Tc)IAT= O(O.l)l at angles 
6. = 1800, cp = 1600, cp = 1400, rp = 1209, cp = w, q = &O”, cp = 700, qI = w, cp = 50”, cp = JO”, cp = 30”, 

fp = 20”. 

numerical program. The t~nsitions between these fiow 
regimes will be discussed for both laminar flows 
(&z = 106) and turbulent flows (Ru = 10”). 

4.2. LaminarJIow 
According to the combined experimental and 

numerical study of Hamady et al. [14], the flow at a 
Rayleigh number of lo6 and an aspect ratio of one is 
two-dimensional and laminar for an angle of incli- 
nation larger than approximately 25”. In the present 
study, steady two-dimensionai results could be 
obtained up to a minimal angle of 20”. Since con- 

vergence was si~~ficantly slowing down approach- 
ing this angle, the highly unstable and probably 
three-dimensionat flow at smaller angles was not 
considered. 

In Fig. 2, the calculated flow fields are plotted for 
angles of inclination of 20 to 180”. The flow fields 
are visualized by a few streamlines, which show the 
topology of the flow. In Fig. 3, the associated tem- 
perature distribution is plotted for isotherms of 
(T- i”,)/A.T = O(O.l)l. We will discuss the change in 
velocity and temperature fields under rotation of the 
cavity from 180 to 20”. In Fig. 4 the local Nusselt 
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FIG. 4. Local Nusselt number distribution at some angles of inclination for Ru = IO". 

number distribution along the hot wall is given for 
some angles of inclination. Figure 5 shows the aver- 
aged Nusselt number distribution at different angles 
of inclination of the cavity. 

At cp = 180”, the calculated flow and temperature 
distribution confirm the theoretical prediction of a 
situation fully determined by diffusion. There is no 
flow and the small cells appearing in the experimental 
study of Hamady et al. [14] indicate that their con- 
necting walls are not perfectly insulated. The local 
Nusselt number along the hot wall and the mean 
Nusselt number equal unity. As soon as the cavity is 
rotated to cp = 160”, the fluid is set in motion. At first 
little mass reaches the opposite wall ; fluid leaving 
the heated or cooled wall is returning to the same 
wall, forming a stretched cell along both walls. The 
isotherms in the core remain oriented perpendicular 
to the gravitational vector during rotation. Rotating 
the cavity to cp = 140”, decreases the size of the cells 
along the heated and cooled wall, since an increasing 
part of the fluid reaches the opposite side. The vel- 
ocities along the hot and cold wall increase under 
rotation, but since the air leaving the hot wall is rela- 
tively hot, it will move quite slowly on its way ‘down’ 
to the cold wall since q > 90”. The temperature gradi- 
ent in the core region gets larger. Since hot fluid is 
positioned in the upper corner and cold air in the 

lower corner, diffusion is still the dominating process 
in the cavity. In fact, for angles of inclination larger 
than 90” the local Nusselt number distribution shows 
values smaller than 1 at the upper part of the hot wall. 
For angles closer to 90”, most of the fluid leaving the 
hot wall is no longer decelerated due to gravity and 
reaches the cold wall, producing the rapid growth of 
the mean Nusselt number as indicated by Fig. 5. 

The essential part of the flow at 90” is the vertical 
boundary layer structure along the hot and cold sur- 
faces. At the corner regions the boundary layer hits the 
adiabatic walls and spreads to a wide non-accelerating 
horizontal flow. Along the boundary layers, a small 
portion of the fluid is entering the boundary layer 
upstream again, forming the same narrow cell as in 
the case of cp > 90”. In the core of the cavity, the flow 
is stably stratified : velocities are perpendicular to the 
gravitational field and the temperature increases with 
the height. 

Rotating the cavity hot wall to a smaller angle of 
cp = 80” produces an acceleration of the flow along the 
top and bottom wall. The narrow cells are stretched 
along these walls and will dominate an increasing 
part of the core region flow, while the flow along these 
walls remains perpendicular to the gravitational field. 
The entrainment of cold fluid in the boundary layer 
at the hot wall is spread over a larger part of the 
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angle of iacliaatioa 

FIG. 5. Dependence of mean Nusselt number on angle of inclination for Ra = 106. 

hot wall boundary layer, thereby smoothing the local 
Nusselt number distribution. 

Further rotation to cp = 70”, makes the corner 
region cells spread towards the opposing walls, as 
the velocity along the adiabatic walls increases. The 
highest velocities in the cavity now appear along these 
walls instead of in the hot and cold wall boundary 
layers. As the cell reaches the opposing boundary 
layer at 9 = &I”, mass will leave this layer per- 
pendicular to the gravitational field to feed the cell. 
The two cells are starting to interact, forming a 
counterclockwise rotating closed cell in the centre of 
the cavity. The flow in this core region pushes the flow 
along the adiabatic walls to the side, breaking up the 
temperature stratification in the core. Because of the 
good mixing now obtained in the core, temperature 
gradients are small here. 

At an angle of inclination of 40*, the cell at the 
lower end of the hot wall will feed relatively cold air 
to the hot-wall side of the centre region, while the cell 
at the upper part of the cold wall feeds relatively hot 
air to the cold-wall side. In this way the counter- 
clockwise rotation of the cell in the centre is accel- 
erated, bending the isotherms in the centre such that 
they are no longer orthogonal to the gravitational 
field. The size of this cell increases, squeezing the two 
original cells towards the hot and cofd wall boundary 
layers. At rp = 20” the flow shows three regions : 

e the main flow is moving along the hot and cold 
wall and leaves the adiabatic side walls before it 
reaches the isotherm walls; 

e the core region contains a countercl~kwise 
rotating cell, growing under further rotation and 
approaching the main flow ; 

a the regions at the start of the boundary layers 
of the hot and cold wall are occupied by small 
countercl~kwise rotating cells. This can already 
be seen from the local minimum in the local Nus- 
selt number distribution at an angle of inclination 
of 30” in Fig. 5. 

The clockwise and ~o~~r~lockwise rotating cells 
in the core are now starting to interact on a small 
area and further rotation makes the flow structure 
increasingly unstable. Close to this angle of inclina- 
tion there will probably be a transition to a three- 
dimensional flow. 

The calculated mean Nusselt number as a function 
of 9 is plotted in Fig. 5. In this figure, the numerical 
results of Catton et al. (1 l] using a Gaierkin method, 
the experimental results of Hamady et al. [14], the 
numerical results of Zhong et al. [13] and the bench- 
mark solution of de Vahl Davis at rp = 90” [24] are 
included. The function shows a maximum and a local 
minimum. The maximum Nusselt number has been 
obtained at an angle of SO”, the minimum was found 



2906 R. A. KUVPER et ul 

at the smallest converged angle. As the study of 
Hamady et al. concluded, the minimum is associated 
with the transition at cp = 20”. Compared with the 
results of previous studies in the laminar regime, our 
results show close agreements. The difference with the 
result of Hamady et al. [14] is due to the conduction 
through the connecting walls in their experiments. 
Zhong et al. [ 131 included variable properties in their 
calculations, leading to differences in those situations 
where heat is mainly transported by diffusion: at 
cp = 180’ they calculated a Nusselt number larger than 
unity. The results of Catton et al. [l I] do have Nu = 1 
at cp = 180’, but their maximum in the mean Nusselt 
number is too low when compared to the benchmark 
solution of de Vahl Davis [24]. 

4.3. Turbulent jlm 
The results for Ra = 10” can be divided into two 

numerical regimes. Using a hybrid scheme, laminar 
solutions could be obtained for angles of inclination 
larger than 90”. for other angles turbulent calculations 
were made. Close to an angle of inclination of 90 
both the laminar and the turbulent calculations con- 

verged to approximately the same result. Although 
the physical situation of a cavity heated from above 
is stable, the calculations converged rather slow fat 
angles of inclination larger than 90 Since the cai- 
culated flow patterns and temperature distribution for 
angles of inclination larger than 90’ do not differ much 
from the case Ra = IO’. we will only discuss the results 
for rotating the cavity from 90 to 30 

Figure 6 shows the flow structures. visualized by 
some streamlines. Figure 7 shows the associated tem- 
perature distribution and Fig. 8 gives the calculated 
mean Nusselt number as a function of the angle of 
inclination. 

At cp = 90 the flow is dominated by thin boundary 
layers along the hot and cold wall. The velocity and 
temperature distribution in a large part of the cavity 
is extremely well stratified. At a Rayleigh number of 
IO’“, the slightest rotation disturbs the flow along the 
adiabatic walls, while at Ra = 10h, results at cp = 90 
do not change abruptly under rotation. 

At 80’ . the flow in the core is still persisting to move 

perpendicular to the gravitational field. The flow 
along the adiabatic walls now can fill a larger area in 

FIG. 6. Flow fields for RU = 10’“. Plotted are some isolines of the streamfunction for cp = 90.. cp = 80 . 
q = 70”. q = 60”, cp = 50”. cp = 40”, cp = 30”. 
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FIG. 7. Temperature distribution for Ra = 10”. Plotted are isotherms (T-T&AT = O(O.l)l and 
(T- Tc)/AT = 0.45, 0.55 in dotted lines at angles cp = 90”, rp = 80”, cp = 7O”, rp = 60”, rp = 50”, cp = MY, 

rp = 30”. 

the comer regions and spreads as can be seen from 
the curving streamlines. This area is well mixed and 
almost isothermal.. 

At an angle of inclination of 70”, the flow is strati- 
fied in only a small part of the core region. The cur- 
vature of the streamlines along the adiabatic walls has 
enlarged ; the fluid bounces back at the opposing walls 
and almost reaches the wall it left again, before mov- 
ing back perpendicular to the gravitational field. 

This meandering of the flow changes smoothly to a 
closed cell structure during rotation at an angle of 
inclination between 60 and 65”. The same velocity and 
temperature distribution appears as in the case of 
Ra = lo6 and an angle of inclination of 50”. The core 
region temperature distribution now leads to a growth 
of the cells along the boundary layers instead of the 
centre cell as was the case in the laminar calculations. 

At an angle of inclination of 45”, the two cells are 
closing in on this centre cell and a transition to 
a unicellular flow appears, as discussed later. At 
rp = 30”, the temperature distribution shows the birth 
of counterclockwise rotating cells at the start of the 

hot and cold wall boundary layers. This flow remains 
up to very small angles of inclination. We assume the 
mean flow to become three-dimensional at an angle 
close to 0”. 

The calculations have been checked using the 
Dirichlet boundary conditions for the turbulence 
equations. The same flow and temperature dis- 
tribution patterns appeared. The mean Nusselt num- 
ber is compared with the previous calculated mean 
Nusselt number in Fig. 8. Although the level is higher, 
the same behaviour is found. The Nusselt number 
increases rapidly when rotating from an angle of incli- 
nation higher than 90” towards 90”. As soon as the 
flow becomes turbulent, the mean Nusselt number 
slowly increases to the transition point at rp = 45”. 
After a jump to a lower level, the growth in the heat 
transfer perseveres up to small angles. The curve 
behaves like a cosine function for angles of inclination 
close to 0” as was already found in previous 
laminar studies [5]. 

4.3.1. Hysteresis. During the rotation of a cavity 
containing the turbulently flowing fluid at Ra = 1O’O 
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FIG. 8. Dependence of mean Nusselt number on angle of inclination for Ru = IO"'. 

and cp = SO”, we saw the same patterns in flow struc- 
ture and heat transfer as in the laminar case of 
Ra = lo6 and cp = 30”. The transition to a unicellular 
flow at an angle of inclination of approximately 45” 
will not be related to the laminar-turbulent transition 
since turbulence is already sufficiently strong for 
angles of inclination larger than 45” in the problem 
for Ra = 10”. Since the Rayleigh number is large the 
mean flow will be two-dimensional up to very small 
angles. We will discuss the results for the velocity field 
and the mean Nusselt number at cp = 45” by going 
towards this angle from two sides as indicated in Figs. 
9 and 10. 

Approaching the angle of inclination of 45’ from 
larger angles, the core region contains three cells. The 
rotation of these cells is oriented like tooth-wheels 
driven by the surrounding boundary layer flow. When 
the angle of inclination decreases, the flow along the 
adiabatic walls increases in strength and turbulence. 
The area occupied by this flow along the adiabatic 
walls broadens and the area available for the cells in 
the core region gets smaller. The clockwise rotating 
cells are squeezed towards each other and the cell in 
the centre of the cavity shrinks rapidly. As soon as 
the centre cell has completely vanished, the two ‘tooth- 
wheels’ start to interact on a smaller area, thereby 
producing large stresses. If the stresses become too 
large, the two cells melt into one cell, forming the 
unicellular flow at small angles. 

Approaching this angle of transition from smaller 
angles, the unicellular flow will lose strength since the 
instability of the situation of a cavity heated from 
below is diminished. As the flow along the adiabatic 
walls slows down, it will dominate a smaller region of 
the cavity, thus producing an almost stagnant space 
in the core region. As soon as the produced space is 
large enough, the three cells will appear again, rotating 
like the original tooth-wheels. 

In the discussion of the transition we can determine 
the mechanism being one of ‘increasing tendency to 
change the flow structure’. In order to understand this 
tendency, the same effect can be seen by rotating a 
cavity through the point at which the angle of incli- 
nation equals 0” : coming from positive angles the flow 
will be clockwise, while coming from negative angles 
the flow will be counterclockwise. The existing flow 
pattern remains until a certain threshoid is reached 
and then changes to the new mode of motion. Since 
the existing flow pattern persist, a hysteresis in the 
transition is found. Numerically, we found two solu- 
tions of the equations, depending on the initial field 
of the iteration process. If the initial field of the cal- 
culation at Ra = 10” contained three cells in the core 
region, this pattern remained until the angle of incli- 
nation was lowered to 44.3”. The unicellular motion 
remained up to an angle of 45”. 

Grid refinement up to a 90 x 90 grid and Rayleigh 
number variation from Rn = 10’ to 10” were applied 
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FIG. 9. Hysteresis in the solution of the flow field distribution. Plotted are streamlines in the core region. 
The lower results are obtained by approaching from lower angle, while the upper results are obtained by 
approaching from higher angle. From left to right the angle of inclination equals W, 44.4”, 44.7” and 

45.1”. 

NU 

1 From lower angle. 

, 

--__r______________ 
From hgher angle 

angle of inclination 

FIG. 10. Hysteresis loop in the mean Nusselt number. 

to check the numerical dependency of the phenom- Since the angle at which the transition takes place 
enon. The angle at which the transition occurs is increasing with increasing Rayleigh number it is 
depends on the Rayleigh number of the problem. For expected that the phenomenon is directly associated 
Ra = lo9 the hysteresis was found at an angle of 42.5”, with the transition arising at an angle of inclination 
for Ra = 10” at 44.5” and for Ra = IO” at 45.5”. of20” at Ra = 106. 
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FIG. I I. Rayleigh number dependence of mean Nusselt number at angles of inclination of 45’ and 90 

4.4. Rayleigh number ~e~e~$en~e 
The dependence of the mean Nusseit number on 

the Rayleigh number has been examined for the cases 
p = 45 and 90”. Figure 1 I shows the results of the 
calculations, in which the transition to turbulence at 

a Rayleigh number of approximately IO* has been 
treated by calculating both a laminar and a turbulent 
solution. The mean Nusselt number can best be cor- 
related to the Rayleigh number by 

‘; 

0.231 Rd-“’ for Ra < 10’ and q = 45. 

N = 0.171 Ru*.‘*~ for Ra < 10’ and y, = 90; 
ld 

0.069 Ru’.~~’ for Ra > 10’ and q, = 45’ ’ 

0.050 Ra’ ‘et for Ra > 10’ and (3, = 90” 

(8) 

We can see that the coefficients of approximately l/4 
and l/3 for the laminar and turbulent case respectively 
appear in the correlations for both angles of incli- 

nations. 
This shows that the results of the laminar cal- 

culations at Ra = 10’ and the turbulent calculations 
at Ra = 10” can be extrapolated to other Rayleigh 
numbers in the same regime at all angles of inclination 
using the power law relation 8. However, care should 
be taken in cases where a transition of ilow patterns 

is crossed. 

5. CONCLUSIONS 

Numerical calculations have been presented for the 
natural convection flow in an inclined square cavity 
at a wide variety of angles of inclination and Rayleigh 
numbers. The flow structures for both the laminar 
and turbulent flows have been discussed and show 
large similarity. 

The results for the calculation of the mean Nusselt 
number as a function of the angle of inclination of the 
cavity have been presented. These results can be used 
to predict the heat transfer in a wide range of Rayleigh 
numbers belonging to the same flow regime. The 
results for the laminar case show agreement with 
results from previous studies, but since the results of 
previous studies differ on essential properties (1%~ = 1 
at cp = 180”. benchmark solution at y, = 90”) it can be 
concluded that the presented results are very reliable. 

Turbulent calculations have been made for 
Ra = 10” at different angles of inclination. To the 
authors’ knowledge this is the first thorough study 
dealing with an inclined cavity containing a turbulent 
natural convection flow. Results for the flow struc- 
tures and temperature distribution have been dis- 
cussed for ail interesting angles of inclination of the 
cavity. 

An interesting transition phenomenon, including a 
hysteresis in the solution, has been discussed in the 
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results for the turbulent flows. The structures involved 
in this transition, combined with the Rayleigh number 
dependence of the transition angle, indicates that this 
transition is related to the critical angle of inclination 
in laminar flow studies. 
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